Disulfide-Based Diblock Copolymer Worm Gels: A Wholly-Synthetic Thermoreversible 3D Matrix for Sheet-Based Cultures.

نویسندگان

  • Karen A Simon
  • Nicholas J Warren
  • Bobak Mosadegh
  • Marym R Mohammady
  • George M Whitesides
  • Steven P Armes
چکیده

It is well-known that 3D in vitro cell cultures provide a much better model than 2D cell cultures for understanding the in vivo microenvironment of cells. However, significant technical challenges in handling and analyzing 3D cell cultures remain, which currently limits their widespread application. Herein, we demonstrate the application of wholly synthetic thermoresponsive block copolymer worms in sheet-based 3D cell culture. These worms form a soft, free-standing gel reversibly at 20-37 °C, which can be rapidly converted into a free-flowing dispersion of spheres on cooling to 5 °C. Functionalization of the worms with disulfide groups was found to be essential for ensuring sufficient mechanical stability of these hydrogels to enable long-term cell culture. These disulfide groups are conveniently introduced via statistical copolymerization of a disulfide-based dimethacrylate under conditions that favor intramolecular cyclization and subsequent thiol/disulfide exchange leads to the formation of reversible covalent bonds between adjacent worms within the gel. This new approach enables cells to be embedded within micrometer-thick slabs of gel with good viability, permits cell culture for at least 12 days, and facilitates recovery of viable cells from the gel simply by incubating the culture in buffer at 4 °C (thus, avoiding the enzymatic degradation required for cell harvesting when using commercial protein-based gels, such as Matrigel).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cationic disulfide-functionalized worm gels.

The recent development of polymerization-induced self-assembly (PISA) has facilitated the rational synthesis of a range of diblock copolymer worms, which hitherto could only be prepared via traditional post-polymerization processing in dilute solution. Herein we explore a new synthetic route to aqueous dispersions of cationic disulfide-functionalized worm gels. This is achieved via the PISA syn...

متن کامل

Mucin-Inspired Thermoresponsive Synthetic Hydrogels Induce Stasis in Human Pluripotent Stem Cells and Human Embryos

Human pluripotent stem cells (hPSCs; both embryonic and induced pluripotent) rapidly proliferate in adherent culture to maintain their undifferentiated state. However, for mammals exhibiting delayed gestation (diapause), mucin-coated embryos can remain dormant for days or months in utero, with their constituent PSCs remaining pluripotent under these conditions. Here we report cellular stasis fo...

متن کامل

Aqueous worm gels can be reconstituted from freeze-dried diblock copolymer powder.

Worm-like diblock copolymer nanoparticles comprising poly(glycerol monomethacrylate) (PGMA) as a stabilizer block and poly(2-hydroxypropyl methacrylate) (PHPMA) as a core-forming block were readily synthesized at 10% w/w solids via aqueous dispersion polymerization at 70 °C using Reversible Addition-Fragmentation chain Transfer (RAFT) chemistry. On cooling to 20 °C, soft transparent free-standi...

متن کامل

pH-Responsive Non-Ionic Diblock Copolymers: Ionization of Carboxylic Acid End-Groups Induces an Order–Order Morphological Transition**

A carboxylic acid based reversible additionfragmentation transfer (RAFT) agent is used to prepare gels composed of worm-like diblock copolymers using two non-ionic monomers, glycerol monomethacrylate (GMA) and 2-hydroxypropyl methacrylate (HPMA). Ionization of the carboxylic acid end-group on the PGMA stabilizer block induces a worm-to-sphere transition, which in turn causes immediate degelatio...

متن کامل

Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents

Benzyl methacrylate (BzMA) is polymerized using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) using reversible addition-fragmentation chain transfer (RAFT) polymerization at 70 °C in n-dodecane. This choice of solvent leads to an efficient dispersion polymerization, with polymerization-induced self-assembly (PISA) occurring via the growing PBzMA block to produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 16 12  شماره 

صفحات  -

تاریخ انتشار 2015